672 research outputs found

    Charge transfer reactions in nematic liquid crystals

    Full text link
    Ultrafast transient absorption studies of intramolecular photoinduced charge separation and thermal charge recombination were carried out on a molecule consisting of a 4-(N-pyrrolidino)naphthalene-1,8-imide donor (PNI) covalently attached to a pyromellitimide acceptor (PI) dissolved in the liquid crystal 4{prime}-(n-pentyl)-4-cyanobiphenyl (5CB). The temperature dependencies of the charge separation and recombination rates were obtained at temperatures above the nematic-isotropic phase transition of 5CB, where ordered microdomains exist and scattering of visible light by these domains is absent. The authors show that excited state charge separation is dominated by molecular reorientation of 5CB perpendicular to the director within the liquid crystal microdomains. They also show that charge recombination is adiabatic and is controlled by the comparatively slow collective reorientation of the liquid crystal microdomains relative to the orientation of PNI{sup +}-PI{sup {minus}}. They also report the results of time resolved electron paramagnetic resonance (TREPR) studies of photoinduced charge separation in a series of supramolecular compounds dissolved in oriented liquid crystal solvents. These studies permit the determination of the radical pair energy levels as the solvent reorganization energy increases from the low temperature crystalline phase, through the soft glass phase, to the nematic phase of the liquid crystal

    Multilayer clustering: Biomarker driven segmentation of Alzheimer's disease patient population

    Get PDF
    Identification of biomarkers for the Alzheimer's disease is a challenge and a very difficult task both for medical research and data analysis. In this work we present results obtained by application of a novel clustering tool. The goal is to identify subpopulations of the Alzheimer's disease (AD) patients that are homogeneous in respect of available clinical and biological descriptors. The result presents a segmentation of the Alzheimer's disease patient population and it may be expected that within each subpopulation separately it will be easier to identify connections between clinical and biological descriptors. Through the evaluation of the obtained clusters with AD subpopulations it has been noticed that for two of them relevant biological measurements (whole brain volume and intracerebral volume) change in opposite directions. If this observation is actually true it would mean that the diagnosed severe dementia problems are results of different physiological processes. The observation may have substantial consequences for medical research and clinical trial design. The used clustering methodology may be interesting also for other medical and biological domains

    Reduced timing Sensitivity in all-optical switching using flat-top control pulses obtained by the optical fourier transform technique

    Get PDF
    For high-speed serial data, timing tolerance is crucial for switching and regeneration. We propose a novel scheme to generate flat-top pulses, for use as gating control pulses. The scheme relies on spectral shaping by a square-shaped filter, followed by a linear transformation of the spectral shape into the time domain, referred to as the optical Fourier transform technique. A 3 ps flat-top pulse derived from a 3 nm wide square filter is obtained, and used to gate an all-optical OTDM demultiplexer, yielding an error-free timing jitter tolerance of 3 ps for 80 Gb/s and 160 Gb/s data signals.</p

    CMOS compatible integrated all-optical radio frequency spectrum analyzer

    Get PDF
    We report an integrated all-optical radio frequency spectrum analyzer based on a ~4cm long doped silica glass waveguide, with a bandwidth greater than 2.5 THz. We use this device to characterize the intensity power spectrum of ultrahighrepetition rate mode-locked lasers at repetition rates up to 400 GHz, and observe dynamic noise related behavior not observable with other technique

    Wavelength conversion of QAM signals in a low loss CMOS compatible spiral waveguide

    Get PDF
    We demonstrate wavelength conversion of quadrature amplitude modulation (QAM) signals, including 32-GBd quadrature phase-shift keying and 10-GBd 16-QAM, in a 50-cm long high index doped glass spiral waveguide. The quality of the generated idlers for up to 20 nm of wavelength shift is sufficient to achieve a BER performance below the hard decision forward error correction threshold BER performance (<3.8 × 103), with an optical signal-to-noise ratio penalty of less than 0.3 dB compared to the original signal. Our results confirm that this is a promising platform for nonlinear optical signal processing, as a result of both very low linear propagation loss (<0.07 dB/cm) and a large material bandgap, which in turn ensures negligible nonlinear loss at telecom wavelengths

    Wavelength Conversion of QPSK and 16-QAM Coherent Signals in a CMOS Compatible Spiral Waveguide

    Get PDF
    <p> We characterize a wavelength converter based on a 50-cm long low-loss spiral Hydex waveguide. A 10-nm FWM bandwidth is shown over which low OSNR penalty (&lt; 0.5dB) wavelength conversion of QPSK and 16-QAM is reported. &copy; OSA 2016.</p

    Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel

    Get PDF
    We have generated a single-wavelength data signal with a data capacity of 5.1 Tbit/s. The enabling techniques to generate the data signal are optical time-division multiplexing up to a symbol rate of 1.28 Tbaud, differential quadrature phase shift keying as data format, and polarisation-multiplexing. For the first time, error-free performance with a bit error rate less than 10-9 is demonstrated for the 5.1 Tbit/s data signal. This is achieved in a back-to-back configuration using a direct detection receiver based on polarisation- and time-demultiplexing, delay-demodulation and balanced photo-detection.</p
    • …
    corecore